
Laboratorio di Tecnologie
dell'Informazione

Ing. Marco Bertini
marco.bertini@unifi.it

http://www.micc.unifi.it/bertini/

lunedì 17 marzo 14

mailto:marco.bertini@unifi.it?subject=
mailto:marco.bertini@unifi.it?subject=
http://www.micc.unifi.it/bertini/
http://www.micc.unifi.it/bertini/

Code testing:
techniques and tools
“Testing can show the presence of errors,

but not their absence.”
- Edsger Dijkstra

lunedì 17 marzo 14

What is software verification ?
• Software verification is a discipline of software

engineering whose goal is to assure that software fully
satisfies all the expected requirements.

• There are two fundamental approaches to verification:

• Dynamic verification, also known as Test or
Experimentation

• This is good for finding bugs

• Static verification, also known as Analysis

• This is useful for proving correctness of a program
although it may result in false positives

lunedì 17 marzo 14

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Experimentation
http://en.wikipedia.org/wiki/Experimentation
http://en.wikipedia.org/wiki/Static_code_analysis
http://en.wikipedia.org/wiki/Static_code_analysis

Static verification

• Static verification is the process of checking
that software meets requirements by doing a
physical inspection of it. For example:

• Code conventions verification

• Bad practices (anti-pattern) detection

• Software metrics calculation

• Formal verification

lunedì 17 marzo 14

http://en.wikipedia.org/wiki/Code_conventions
http://en.wikipedia.org/wiki/Code_conventions
http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Anti-pattern
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Formal_verification

Dynamic verification

• Dynamic verification is performed during the execution of
software, and dynamically checks its behaviour; it is
commonly known as the Test phase. Verification is a Review
Process. Depending on the scope of tests, we can categorize
them in three families:

• Test in the small: a test that checks a single function or
class (Unit test)

• Test in the large: a test that checks a group of classes

• Acceptance test: a formal test defined to check
acceptance criteria for a software

lunedì 17 marzo 14

http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Software_testing
http://en.wikipedia.org/wiki/Unit_test
http://en.wikipedia.org/wiki/Unit_test

Static and Dynamic

• Static and Dynamic analysis are
complementary in nature

• Static unit testing is not an alternative to
dynamic unit testing, or vice versa.

• It is recommended that static unit testing be
performed prior to the dynamic unit testing

lunedì 17 marzo 14

Static program analysis

• Static program analysis is the analysis of
computer software that is performed without
actually executing programs

• The term is usually applied to the analysis
performed by an automated tool

• code review is a human analysis procedure
in which different programmers read the
code and give recommendations on how to
improve it.

lunedì 17 marzo 14

http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/Program_analysis_(computer_science)
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis
http://en.wikipedia.org/wiki/Code_review
http://en.wikipedia.org/wiki/Code_review

Static program analysis - cont.

• It is possible to prove that (for any Turing
complete language, like C and C++), finding all
possible run-time errors in an arbitrary
program (or more generally any kind of
violation of a specification on the final result of
a program) is undecidable...

• ...but one can still attempt to give useful
approximate solutions

lunedì 17 marzo 14

http://en.wikipedia.org/wiki/Turing_complete
http://en.wikipedia.org/wiki/Turing_complete
http://en.wikipedia.org/wiki/Turing_complete
http://en.wikipedia.org/wiki/Turing_complete
http://en.wikipedia.org/wiki/Decision_problem
http://en.wikipedia.org/wiki/Decision_problem

Static program analysis - cont.

• Many IDEs (e.g.
Eclipse, XCode)
have a static analysis
component:
CODAN in Eclipse,
CLANG in XCode

• Other tools are
available as plugins
or standalone tools
(e.g. cppcheck)

Eclipse shows results of its
static analysis tools with bug
icons... these are not results of
the compiler !

Eclipse shows results of its
static analysis tools with bug
icons... these are not results of
the compiler !

lunedì 17 marzo 14

Static program analysis - cont.

• Many IDEs (e.g.
Eclipse, XCode)
have a static analysis
component:
CODAN in Eclipse,
CLANG in XCode

• Other tools are
available as plugins
or standalone tools
(e.g. cppcheck)

lunedì 17 marzo 14

Static program analysis - cont.

• Many IDEs (e.g.
Eclipse, XCode)
have a static analysis
component:
CODAN in Eclipse,
CLANG in XCode

• Other tools are
available as plugins
or standalone tools
(e.g. cppcheck)

lunedì 17 marzo 14

Why using static analysis tools ?

• McConnel has reported in “Code Complete”
that the cost of fixing an error at testing stage
is 10x that of code writing stage:

lunedì 17 marzo 14

Why using static analysis tools ?

• Static analysis tools allow you to quickly detect a lot
of errors of the coding stage

• Static analyzers check even those code fragments
that get control very rarely.

• Static analysis doesn't depend on the compiler you
are using and the environment where the compiled
program will be executed. It allows you to find
hidden errors that can reveal themselves only a few
years later.

• You can easily and quickly detect misprints and
consequences of Copy-Paste usage.

lunedì 17 marzo 14

http://www.viva64.com/en/a/0068/
http://www.viva64.com/en/a/0068/

Static code analysis' disadvantages
• Static analysis is usually poor regarding

diagnosing memory leaks and concurrency
errors. To detect such errors you actually need
to execute a part of the program virtually.

• There are specific tools for this, like Valgrind,
AddressSanitizer and MemorySanitizer

• A static analysis tool warns you about odd
fragments that can actually be quite correct.
Only the programmer can understand if the
analyzer points to a real error or it is just a
false positive.

lunedì 17 marzo 14

Unit testing
• Unit testing is a method by which individual

units of source code are tested to determine if
they are fit for use.

• It is NOT an academic distraction of
exercising all inputs... it’s a common practice
in agile methods

• It is becoming a substantial part of software
development practice, with many
frameworks and tools to help its
implementation

lunedì 17 marzo 14

Unit testing - cont.

• The idea about unit tests is to write test
cases (i.e. code) for all functions and methods
so that whenever a change causes a problem,
it can be identified and fixed quickly.

• Ideally each test is separate from the
others.

• To ease the task of writing the testing code
you can use several frameworks like
CppUnit, CxxTest, GoogleTest, Boost::Test,
etc.

lunedì 17 marzo 14

Unit testing - cont.

• Programmers create test inputs using intuition and
experience, following the specifications

• Programmers determine proper output for each input
using informal reasoning or experimentation

• A test run shows results like passed vs. failed tests, either
onscreen or as a stream (in XML, for example). This latter
format can be leveraged by an automated process to
reject a code change.

• Ideally, unit tests should be incorporated into a makefile
or a build process so they are ran when the program is
compiled.

lunedì 17 marzo 14

Unit testing - cont.

• The environment of a unit is emulated and tested in isolation

• The caller unit is known as test driver

• A test driver is a program that invokes the unit under test

• It provides input data to unit under test and report the test result

• The emulation of the units called by the UUT are called stubs

• It is a dummy program

• The test driver and the stubs are together called scaffolding

lunedì 17 marzo 14

Unit test: terms

• A test suite groups test cases around a similar
concept. Each test case attempts to confirm
domain rule assertions.

• There are situations where a group of test cases
need a similar environment setup before running.
A test fixture, enables a setup definition to be
executed before each of its test cases. The fixture
can include a teardown function to clean up the
environment once a test case finishes, regardless
of its results.

lunedì 17 marzo 14

Unit test: example

class Calculator {

 public:
 Calculator();
 Calculator(int v);

 int sum(int x);
 int subtract(int x);
 int mul(int x);

 int getValue() const {
 return value;
 }

 void setValue(int value){
 this->value = value;
 }

private:
 int value;
};

lunedì 17 marzo 14

Unit test: CxxTest example
#include <cxxtest/TestSuite.h>

#include "Calculator.h"

class TestCalculator : public
CxxTest::TestSuite {
public:
 void setUp() {
 // TODO: Implement setUp() function.
 }

 void test_global_Calculator_Calculator() {
 Calculator c;
 TS_ASSERT_EQUALS(c.getValue(), 0);
 }

 void
test_global_Calculator_Calculator_int() {
 Calculator c(3);
 TS_ASSERT_EQUALS(c.getValue(), 3);
 }

 void testSum() {
 Calculator c(4);
 c.sum(3);

 TS_ASSERT_EQUALS(c.getValue(), 7);
 }

 void testSubtract()
 {
 Calculator c(5);
 c.subtract(3);
 TS_ASSERT_EQUALS(c.getValue(), 2);
 }

 void testMul()
 {
 Calculator c(7);
 c.mul(2);
 TS_ASSERT_EQUALS(c.getValue(), 14);
 }

};

lunedì 17 marzo 14

Unit test: CxxTest example

• Let’s suppose that the implementation of the
constructor is wrong, here’s the output of the
tests:

Running 5 tests
In TestCalculator::test_global_Calculator_Calculator:
<<reference tests>>:19: Error: Expected (c.getValue() == 0), found
(1 != 0)
....
Failed 1 of 5 tests
Success rate: 80%
No memory leaks detected.

Memory usage statistics:

Total memory allocated during execution: 55 bytes
Maximum memory in use during execution: 55 bytes
Number of calls to new: 2
Number of calls to delete (non-null): 2
Number of calls to new[]: 0
Number of calls to delete[] (non-null): 0
Number of calls to delete/delete[] (null): 0
Result: 1

lunedì 17 marzo 14

Debugging

• The process of determining the cause of a failure is
known as debugging

• It is a time consuming and error-prone process

• Debugging involves a combination of systematic
evaluation, intuition and a little bit of luck

• The purpose is to isolate and determine its specific
cause, given a symptom of a problem

• IDEs like XCode and Eclipse integrate an external
debugger (lldb or gdb). Install it.

lunedì 17 marzo 14

Debugging

• The process of determining the cause of a failure is
known as debugging

• It is a time consuming and error-prone process

• Debugging involves a combination of systematic
evaluation, intuition and a little bit of luck

• The purpose is to isolate and determine its specific
cause, given a symptom of a problem

• IDEs like XCode and Eclipse integrate an external
debugger (lldb or gdb). Install it.

To debug using Eclipse on
OSX install gdb using
Macports or Homebrew

lunedì 17 marzo 14

